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COMMENT 

A reply to Scutaru's letter on the generalised exponents of 
a 3 9  C) 
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Abstract. In a recent letter on the generalised exponents of the Lie algebra sl(3, C ) ,  Scutaru 
refers to an integrity basis of the enveloping algebra proposed by us as a hypothesis and 
then proceeds to establish its validity. The purpose of this comment is to stress the fact 
that this integrity basis was not a hypothesis but a proven result. 

Using a result of Kostant [ 11, Scutaru [2] recently derived a formula for the generalised 
exponents of the Lie algebra sl(3,C). He then proceeded to establish a one-to-one 
correspondence between the SI( 3, C) -module structure of the enveloping algebra of 
sI(3, C) as described by his formula and the one implied by the integrity basis proposed 
by us [3]; he refers to this basis as a hypothesis and concludes that the above exercise 
proves its validity. The purpose of this comment is to point out that the generating 
function derived in [3] 

where U carries the degree of the tensor operator and A ,  the representation labels A,  
(Cartan labels) as exponents, already establishes this result and therefore, as far as 
this one-to-one correspondence is concerned, the integrity basis in [3] was a proven 
result rather than a hypothesis. 

Given a Lie algebra L of a Lie group G, its enveloping algebra V ( L )  may be 
expressed [4] as the direct sum 

V ( L )  = v 0 ( L ) + v ' ( L ) + v 2 ( L ) + .  . . + V " ( L ) + .  . . 
where V " ( L )  represents the set of elements of V ( L )  which are symmetric and 
homogeneous of degree n, and Vo( L )  = C. Let S( L )  be the symmetric algebra of L 
Since V ( L )  and S ( L )  are isomorphic as L-modules, the decomposition by degree of 
V ( L )  into a direct sum of irreducible L-modules which respects the grading (2) is 
identical to the decomposition of the tensor products 

(3) 

where r is a d-dimensional tensor whose components are c-numbers and which 
transforms by the adjoint representation of L. Kostant's generalised exponents corre- 
spond to the degrees of the irreducible tensors into which the products (3) decompose. 

(ry = roro.. .or n identical copies ( n  = 1, CO) 
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The decomposition ( 3 )  is known as the symmetric plethysm and the irreducible tensors 
are referred to as polynomial tensors based on r; the corresponding tensor operator 
in V( 15) is obtained through symmetrisation with respect to order. We shall now briefly 
describe the method used in [3]  to decompose (3). 

This method makes use of a subgroup H of G. The tensor r is a reducible tensor 
of H. Let us denote by r h ,  Yi,. . . , r;? the m irreducible H-tensors into which 
decomposes. The idea is to first construct a generating function for H-tensors based 
on the m tensors rh and then transform it into a generating function for G-polynomial 
tensors based on r. If one chooses H = U( 1) x U( 1) . . . x U( 1) d times, the generating 
function for H-tensors is simply the generating function for weights; the transformation 
is then effected by making use of Weyl’s characteristic function. The generating function 
(1) is derived by using H = SU(2) x U(1); the conversion from a generating function 
for H-tensors to a generating function for G-tensors was done using the group-subgroup 
characteristic function whose role in the conversion parallels that of the Weyl charac- 
teristic function in converting a weight generating function to a generating function 
for G-tensors. In this approach one first derives the generating function for polynomial 
tensors (( 1) in the sI(3, C )  case) without any assumption about the integrity basis; at 
each step of the derivation, generating functions with proven integrity bases are used 
and  since everything is done analytically, the generating function (1) constitutes a 
proven result and  the validity, as far as the one-to-one correspondence which Scutaru 
establishes in [2] is concerned, of the integrity basis and  syzygies follows immediately. 
There is no need for further testing, although the work of Scutaru does establish in a 
slightly more explicit form the syzygy written in symbolic form in (3 .7 )  of our earlier 
paper. 
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